Senescence of human fibroblasts after psoralen photoactivation is mediated by ATR kinase and persistent DNA damage foci at telomeres.
نویسندگان
چکیده
Cellular senescence is a phenotype that is likely linked with aging. Recent concepts view different forms of senescence as permanently maintained DNA damage responses partially characterized by the presence of senescence-associated DNA damage foci at dysfunctional telomeres. Irradiation of primary human dermal fibroblasts with the photosensitizer 8-methoxypsoralen and ultraviolet A radiation (PUVA) induces senescence. In the present study, we demonstrate that senescence after PUVA depends on DNA interstrand cross-link (ICL) formation that activates ATR kinase. ATR is necessary for the manifestation and maintenance of the senescent phenotype, because depletion of ATR expression before PUVA prevents induction of senescence, and reduction of ATR expression in PUVA-senesced fibroblasts releases cells from growth arrest. We find an ATR-dependent phosphorylation of the histone H2AX (gamma-H2AX). After PUVA, ATR and gamma-H2AX colocalize in multiple nuclear foci. After several days, only few predominantly telomere-localized foci persist and telomeric DNA can be coimmunoprecipitated with ATR from PUVA-senesced fibroblasts. We thus identify ATR as a novel mediator of telomere-dependent senescence in response to ICL induced by photoactivated psoralens.
منابع مشابه
Persistent Amplification of DNA Damage Signal Involved in Replicative Senescence of Normal Human Diploid Fibroblasts
Foci of phosphorylated histone H2AX and ATM are the surrogate markers of DNA double strand breaks. We previously reported that the residual foci increased their size after irradiation, which amplifies DNA damage signals. Here, we addressed whether amplification of DNA damage signal is involved in replicative senescence of normal human diploid fibroblasts. Large phosphorylated H2AX foci (>1.5 μm...
متن کاملTelomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence
Telomeres are specialized nucleoprotein structures, which protect chromosome ends and have been implicated in the ageing process. Telomere shortening has been shown to contribute to a persistent DNA damage response (DDR) during replicative senescence, the irreversible loss of division potential of somatic cells. Similarly, persistent DDR foci can be found in stress-induced senescence, although ...
متن کاملDefective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells
The main characteristic of senescence is its stability which relies on the persistence of DNA damage. We show that unlike fibroblasts, senescent epithelial cells do not activate an ATM-or ATR-dependent DNA damage response (DDR), but accumulate oxidative-stress-induced DNA single-strand breaks (SSBs). These breaks remain unrepaired because of a decrease in PARP1 expression and activity. This lea...
متن کاملPsoralen photoactivation promotes morphological and functional changes in fibroblasts in vitro reminiscent of cellular senescence.
Premature aging of the skin is a prominent side effect of psoralen photoactivation, a treatment used widely for various skin disorders. The molecular mechanisms underlying premature aging upon psoralen photoactivation are as yet unknown. Here we show that treatment of fibroblasts with 8-methoxypsoralen (8-MOP) and subsequent ultraviolet A (UVA) irradiation resulted in a permanent switch of mito...
متن کامل53BP1 deficiency combined with telomere dysfunction activates ATR-dependent DNA damage response
TRF1 protects mammalian telomeres from fusion and fragility. Depletion of TRF1 leads to telomere fusions as well as accumulation of γ-H2AX foci and activation of both the ataxia telangiectasia mutated (ATM)- and the ataxia telangiectasia and Rad3 related (ATR)-mediated deoxyribonucleic acid (DNA) damage response (DDR) pathways. 53BP1, which is also present at dysfunctional telomeres, is a targe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 17 4 شماره
صفحات -
تاریخ انتشار 2006